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1. Introduction

There is a large literature evaluating the consequences of firing costs on long-run labor

market outcomes. Its main purpose: To explain the differences in unemployment rates

observed between Europe and the U.S. While this an important objective and there has been

considerable progress in this line of research, this paper changes the focus of the analysis

and evaluates the effects of firing costs on business cycle dynamics. There are two reasons

for doing this. First, policy makers often justify introducing firing costs as an effective tool

for reducing the magnitude of economic downturns. Thus, it seems important to evaluate

the rationale behind this claim. Second, there are features of the data, besides long-run

labor market outcomes, that firing costs might help explain. In fact, employment protection

levels do seem to be related to business cycle differences across countries: Figure 1 plots the

standard deviation of output against the employment protection level for seventeen OECD

countries, showing that they are negatively related. While this relation is highly suggestive,

it does not provide evidence that firing costs affect business cycle dynamics in any important

way. A third factor (e.g. high risk aversion) could be generating lower output fluctuations and

leading countries to adopt higher employment protection levels. Thus, a negative relation in

Figure 1 could be obtained while firing costs have no effects. To determine the effects of firing

costs on business cycle fluctuations, analysis is needed. This paper provides such analysis:

It describes a real business cycle model with establishment level dynamics, introduces firing

costs and evaluates their effects.

The model is a stochastic version of Veracierto [17], which in turn is based on Hopenhayn

and Rogerson [9]. The economy is populated by a representative household that values

consumption and leisure. Output, which can be consumed or invested, is produced by

a large number of establishments that use capital and labor as inputs into a decreasing

returns to scale technology. Establishments are subject both to idiosyncratic and aggregate

productivity shocks. In the benchmark case, both capital and labor are freely movable across

establishments.

Once the benchmark model is parametrized to U.S. data, firing taxes ranging from one

month to one year of wages are introduced. The paper finds that firing taxes have consid-



erable business cycle effects. In particular, firing taxes equal to one year of wages reduce

the standard deviation of output by 10.7%, the standard deviation of investment by 14.7%

and the standard deviation of employment by 30.6%. Also, the firing taxes make aggre-

gate employment more persistent: its first order autocorrelation increases from 0.66 to 0.71.

These findings suggest that firing costs could play a significant role in explaining differences

in business cycle fluctuations across countries.

This is not the first paper analyzing the effects of firing costs on business cycle dynamics.

In a partial equilibrium setting, Campbell and Fisher [4] studied how firing costs affect the

aggregate behavior of a large number of establishments subject to idiosyncratic productivity

shocks and a shock to the aggregate wage rate. Their focus was on the volatility of job

destruction relative to the volatility of job creation, finding that firing costs increase it.

Cabrales and Hopenhayn [3] analyzed a similar type of model except that the aggregate

shock was in the aggregate productivity level instead of the wage rate. Contrary to Campbell

and Fisher [4], they found that the firing costs decrease the volatility of job destruction

relative to the volatility of job creation. This paper differs from Campbell and Fisher [4] and

Cabrales and Hopenhayn [3] in that it performs a general equilibrium analysis where both

aggregate productivity and the wage rate are changing. In terms of the relative volatility

of job destruction, this paper obtains results that are closer to Cabrales and Hopenhayn [3]

than to Campbell and Fisher [4].

Current work by Samaniego [15] is more closely related. Samaniego also considers a

version of Veracierto [17] and performs a general equilibrium analysis.1 However, he stud-

ies how firing taxes affect the deterministic transitionary dynamics after a large persistent

change in aggregate productivity. This paper, on the contrary, computes the full stochastic

equilibrium of a real business cycle model. An advantage of this approach is that it allows to

evaluate how firing taxes affect standard business cycle statistics. Another advantage is that

it allows to assess the welfare benefits of reducing business cycle fluctuations. Despite the

differences, all these papers share a basic result: Firing taxes are found to lower the response

1The models differ in that Samaniego [15] allows for endogenous entry and exit while this paper treats
them as exogenously determined. Another difference is that this paper gives firms a “quits allowance” before
being subject to firing taxes, while Samaniego doesn’t.
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of the economy to aggregate productivity changes.

The rest of the paper is organized as follows. Section 2 describes the environment. Section

3 defines a competitive equilibrium and describes the computational strategy. Section 4

calibrates the benchmark economy. Finally, Section 5 introduces firing taxes and evaluates

their effects. An appendix provides the proofs to all the claims made in the paper.

2. The economy

The economy is populated by a unit measure of ex-ante identical agents with preferences

given by

E
∞X
t=0

βt [ln ct + v(lt)] ,

where ct is consumption, lt is leisure and 0 < β < 1 is the discount factor. Every period

agents are endowed with ω units of time. Given an institutionally determined workweek of

length equal to one, leisure can only take values ω or ω − 1.2
Output, which can be consumed or invested, is produced by a large number of establish-

ments with production function given by

yt = e
ztstg

θ
tn

γ
t ,

where zt ∈ Z is an aggregate productivity shock, st ∈ S = {0, smin, ..., smax} is an idiosyn-
cratic productivity shock, gt is capital, nt is labor, θ > 0, γ > 0, and θ+γ < 1. The aggregate

productivity shock zt ∈ Z, which is common to all establishments, follows a finite Markov
process with transition matrix H. The idiosyncratic productivity shock st ∈ S also follows
a finite Markov process, but with transition matrix Q. Realizations of st are assumed to be

independent across all establishments and st = 0 is assumed to be an absorbing state. Since

there are no fixed costs of operation, establishments will exit only when their idiosyncratic

productivity becomes zero. Every period ν new establishments are exogenously born. The

distribution over initial idiosyncratic productivity levels is given by ψ.

2In order to analyze the effects of firing taxes it is important to assume that labor is indivisible: It allows
to associate changes in the labor input of establishments with changes in employment.
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3. Competitive equilibrium

In this section I describe a competitive equilibrium where establishments are subject to

firing taxes and the proceeds are rebated to households as lump sum transfers. Following

Hopenhayn and Rogerson [9], firing taxes are modelled as a tax on reducing employment.

In particular, whenever an establishment makes its current employment level nt lower than

(1− q)nt−1 it must pay a tax rate τ on the difference. Observe that q is a policy parameter
specifying a contraction rate below which establishments are not subject to firing taxes.

Hereon, I will refer to q as the “quit rate of workers”.3

In order to define a competitive equilibrium I will index the history of an individual

establishment by sa = (s0, ..., sa) ∈ Sa+1, where sj is the idiosyncratic productivity that the
establishment had when it was of age j. Also, the history of aggregate productivity levels

since date 0 will be denoted by zt = (z0, ..., zt) ∈ Zt+1, where zj is the aggregate productivity
level that the economy had at date j.

Following Hansen [7] and Rogerson [14], I assume that agents trade employment lotter-

ies. This makes the preferences of the representative household linear with respect to the

probability of working ηt.
4 The problem of the representative household at date 0 is then

given by the following equation:

max

(
ln c0 − αη0 +

∞X
t=1

X
zt

βt
£
ln ct

¡
zt
¢− αηt

¡
zt
¢¤ " tY

j=1

H(zj−1, zj)

#)
(3.1)

subject to:

ct
¡
zt
¢
+ kt+1

¡
zt
¢− (1− δ) kt

¡
zt−1

¢
+
X
zt+1

pt(z
t; zt+1)bt+1

¡
zt, zt+1

¢
≤ wt

¡
zt
¢
ηt
¡
zt
¢
+ rt

¡
zt
¢
kt
¡
zt−1

¢
+ bt

¡
zt
¢
+Dt

¡
zt
¢
+ Tt

¡
zt
¢

(3.2)

3The parameter q will be actually calibrated to the quit rate of workers since, in practice, establishments
do not have to pay firing taxes on quits. Assuming a positive q is not only a considerable gain in realism,
but will make the problem of computing a competitive equilibrium tractable.

4In particular, α in equation (3.1) is given by v(ω)− v(ω − 1).
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b0 = 0, k0, and z0 given,

where kt is the capital owned by the household, pt(·, zt+1) is the price of an Arrow security
which delivers one unit of the consumption good if zt+1 is realized, bt(·, zt+1) are the purchases
of this type of security, wt is the wage rate, rt is the rental rate of capital, Dt are profits and

Tt are the lump sum transfers from the government.

Establishments maximize expected discounted profits net of firing taxes. The problem of

an establishment of age a and idiosyncratic history sa (when the aggregate history is given

by zt) is described by the following equation:

max {eztsaga,t
¡
sa, zt

¢θ
na,t

¡
sa, zt

¢γ − wt ¡zt¢na,t ¡sa, zt¢− rt ¡zt¢ ga,t ¡sa, zt¢− τfa,t
¡
sa, zt

¢
+

∞X
j=1

X
sa+j

X
zt+j

"
jY
h=1

pt+h−1(zt+h−1; zt+h)

#
[ezt+jsa+jga+j,t+j

¡
sa+j, zt+j

¢θ
na+j,t+j

¡
sa+j, zt+j

¢γ
−wt+j

¡
zt+j

¢
na+j,t+j

¡
sa+j, zt+j

¢− rt+j ¡zt+j¢ ga+j,t+j ¡sa+j, zt+j¢
−τfa+j,t+j

¡
sa+j, zt+j

¢
]

"
jY
h=1

Q(sa+h−1, sa+h)

#
}

subject to:

na+j,t+j
¡
sa+j, zt+j

¢ ≥ (1− q)na+j−1,t+j−1 ¡sa+j−1, zt+j−1¢− fa+j,t+j ¡sa+j, zt+j¢ , (3.3)

fa+j,t+j
¡
sa+j, zt+j

¢ ≥ 0, (3.4)

na−1,t−1
¡
sa−1, zt−1

¢
given,

where f is the amount of firing done by the establishment. Observe that the establishment

cannot reduce its employment level below its previous period employment level (net of quits)

without firing workers and paying the associated taxes. Although the above problem was

defined for any initial condition, it must be the case that

na−1,t−1
¡
sa−1, zt−1

¢
= 0, when a = 0, (3.5)
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since establishments are born with zero previous period employment. Also, observe that

at t = 0, establishments of age a and history sa take their previous employment level

na−1,−1(sa−1, z−1) as given.

In order to aggregate the behavior of all establishments it will be important to describe the

distribution µ of establishments across ages a and idiosyncratic histories sa. This distribution

satisfies the following equations:

µa+1(s
a+1) = Q(sa, sa+1)µa(s

a), for every a ≥ 0 and sa+1,
µ0
¡
s0
¢
= νψ(s0).

Observe that the number of establishments of age 0 and productivity s0 is given by the

arrival of new establishments ν times the probability of drawing an initial productivity equal

to s0.

The consumption good market clearing condition is then given by

ct
¡
zt
¢
+ kt+1

¡
zt
¢− (1− δ) kt

¡
zt−1

¢
=
X
a≥0

X
sa

eztsaga,t
¡
sa, zt

¢θ
na,t

¡
sa, zt

¢γ
µa(s

a). (3.6)

This condition states that aggregate consumption plus aggregate investment must be equal

to the production of all establishments.

The capital market clearing condition is

X
a≥0

X
sa

ga,t
¡
sa, zt

¢
µa(s

a) = kt
¡
zt−1

¢
. (3.7)

That is, the total amount of capital rented by the establishments must be equal to the stock

of capital supplied by the families.

Similarly, the market clearing condition for the labor market is given by

X
a≥0

X
sa

na,t
¡
sa, zt

¢
µa(s

a) = ηt
¡
zt
¢
. (3.8)
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The securities market clearing condition is simply

bt+1
¡
zt+1

¢
= 0, (3.9)

since households are identical.

As was already mentioned, the government rebates to the households all the firing taxes

collected from the establishments. The budget constraint of the government is then the

following:

Tt
¡
zt
¢
= τ

X
a≥0

X
sa

fa,t
¡
sa, zt

¢
µa(s

a). (3.10)

Finally, the profits received by the representative household must be equal to the profits

made by all the establishments in the economy:

Dt
¡
zt
¢
=
X
a≥0

X
sa

[eztsaga,t
¡
sa, zt

¢θ
na,t

¡
sa, zt

¢γ − wt ¡zt¢na,t ¡sa, zt¢
−rt

¡
zt
¢
ga,t
¡
sa, zt

¢− τfa,t
¡
sa, zt

¢
]µa(s

a). (3.11)

3.1. A quasi-planner equilibrium

While the competitive equilibrium with firing taxes described above seems a difficult object

to analyze, it can be simplified quite substantially. It is straightforward to show that if {ct,
kt+1, ηt, gt, nt, ft, bt+1, wt, rt, pt, Dt, Tt}∞t=0 is a competitive equilibrium, then {ct, kt+1, ηt,
gt, nt, ft}∞t=0 solves the following quasi-planner problem:

max

(
ln c0 − αη0 +

∞X
t=1

X
zt

βt
£
ln ct

¡
zt
¢− αηt

¡
zt
¢¤ " tY

j=1

H(zj−1, zj)

#)
(3.12)

subject to

ct
¡
zt
¢
+ kt+1

¡
zt
¢− (1− δ) kt

¡
zt−1

¢
≤
X
a≥0

X
sa

h
eztsaga,t

¡
sa, zt

¢θ
na,t

¡
sa, zt

¢γ − τfa,t
¡
sa, zt

¢i
µa(s

a) + Tt
¡
zt
¢

(3.13)

na,t
¡
sa, zt

¢ ≥ (1− q)na−1,t−1 ¡sa−1, zt−1¢− fa,t ¡sa, zt¢ , (3.14)
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X
a≥0

X
sa

na,t
¡
sa, zt

¢
µa(s

a) = ηt
¡
zt
¢

(3.15)

X
a≥0

X
sa

ga,t
¡
sa, zt

¢
µa(s

a) = kt
¡
zt−1

¢
(3.16)

fa,t
¡
sa, zt

¢ ≥ 0, (3.17)

na−1,t−1
¡
sa−1, zt−1

¢
= 0, for a = 0 (3.18)

k0, z0, and
©
na−1,−1

¡
sa−1, z−1

¢ª
a,sa

given.

The converse is also true. If {ct, kt+1, ηt, gt, nt, ft}∞t=0 solves the above quasi-planner
problem for some stochastic process Tt and the following condition is satisfied

Tt
¡
zt
¢
= τ

X
a≥0

X
sa

fa,t
¡
sa, zt

¢
µa(s

a), (3.19)

then {ct, kt+1, ηt, gt, nt, ft, bt+1, wt, rt, pt, Dt, Tt}∞t=0 is a competitive equilibrium for some

{bt+1, wt, rt, pt,Dt}∞t=0.5

3.2. A recursive competitive equilibrium

In order to compute a competitive equilibrium it will be useful to work with a recursive

formulation to the quasi-planner equilibrium described above. Since the quasi-planner prob-

lem (3.12) is convex, establishments that have different idiosyncratic histories and\or ages
but that have identical previous period employment and current idiosyncratic productivity

levels will be treated as being identical by the quasi-planner, i.e. they will be assigned the

same contingent employment plan.6 As a result, in the recursive formulation that follows,

I will index establishments by their previous period employment level u and their current

idiosyncratic productivity level s.

The individual state of the representative quasi-planner is then given by the stock of

capital k and a measure x describing the distribution of establishments across types (u, s).

5Appendix A provides a formal proof for this equivalence result.

6For a proof, see Appendix B.
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The aggregate state of the economy is given by the economy-wide capital level K, the

economy-wide distribution of establishments X, and the aggregate productivity shock z.

The problem faced by the representative quasi-planner is given by the following dynamic

programming problem:

v(z,K,X, k, x) = max
c,η,g,n,i

(
ln c− αη + β

X
z0
v(z0,K 0,X 0, k0, x0)H(z, z0)

)

subject to

c+ i ≤
Z n

ezsg (u, s)θ n (u, s)γ − τ max [0, (1− q)u− n(u, s)]
o
dx+ T (z,K,X) (3.20)

Z
n(u, s)dx ≤ η (3.21)Z
g(u, s)dx ≤ k (3.22)

k0 = (1− δ)k + i (3.23)

x0 (U 0 × {s0}) =
Z
(u,s):n(u,s)∈U 0

Q(s, s0)dx+ χ (0 ∈ U 0) νψ (s0) (3.24)

T (z,K,X) =

Z
τ max [0, (1− q)u−N(u, s; z,K,X)] dX (3.25)

K 0 = (1− δ)K + I (z,K,X) (3.26)

X 0 (U 0 × {s0}) =
Z
(u,s):N(u,s;z,K,X)∈U 0

Q(s, s0)dx+ χ (0 ∈ U 0) νψ (s0) (3.27)

where χ is an indicator function that takes value equal to one if the argument is true and

zero otherwise. Observe that, aside from the aggregate state of the economy (z,K,X),

the representative quasi-planner takes the economy-wide employment decision rule N and

economy-wide investment decision rule I as given.

In a recursive competitive equilibrium, expectations must be rational:

N(u, s; z,K,X) = n(u, s; z,K,X,K,X)
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and

I (z,K,X) = i (z,K,X,K,X) .

That is, the economy-wide decision rules N and I must be generated by the decision rules

n and i of the representative quasi-planner.

3.3. Computational strategy

Observe that, conditional on n, k, and z, the optimal capital allocation rule g is obtained

by maximizing aggregate output
R
ezsgθnγdx subject to the feasibility constraint (3.22).

Substituting this solution and equation (3.25) into equation (3.20) and then substituting the

resulting expression together with equation (3.21) into the one-period return function

R = ln ct − αηt

allows to write the return function as a function of (z,K,X, k, x,N, n, i).

The problem of the representative quasi-planner can then be written as

v(z,K,X, k, x) = max
n,i
{R(z,K,X, k, x,N, n, i) + βE [v(z0,K 0,X 0, k0, x0) | z]} (3.28)

subject to equations (3.23), (3.24), (3.26) and (3.27).

The high dimensionality of the state space seems to preclude any possibility of computing

a recursive competitive equilibrium. However, two features of the problem will render it

tractable. The first is the nature of the employment decision rule n. Appendix C shows that

the employment decision rule is fully characterized by a pair of threshold functions n̄ and n

as follows

n(u, s; z,K,X, k, x) =


n̄(s; z,K,X, k, x), if (1− q)u > n̄(s; z,K,X, k, x)
n(s; z,K,X, k, x), if (1− q)u < n(s; z,K,X, k, x)

(1− q)u, otherwise

 . (3.29)

Observe that the upper and lower thresholds n̄ and n do not depend on the previous em-

ployment level u. The (S,s) nature of the employment decision rule is critical for making the
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decision variables in (3.28) finite dimensional: instead of letting the quasi-planner choose

a generic function n, there will be no loss of generality in constraining it to choose finite

dimensional thresholds n̄ and n and defining the employment decision rule n as in equation

(3.29).

The second property that makes the problem tractable is that, if the aggregate produc-

tivity z fluctuations are sufficiently small, along a stationary equilibrium the distribution x

will always have a finite support. To see this more clearly it will be convenient to consider

the deterministic steady state of an economy where the aggregate productivity level z is

constant and equal to zero. Hereon, any variable superscripted with a star (∗) will refer to
its corresponding deterministic steady state value. Before proceeding I state the following

result.

Proposition 3.1. In a deterministic steady state equilibrium, the invariant distribution x∗

has a finite support given by the union of {0} and the following set:

m∗ =
©
(1− q)hn∗ (s)ªs=smin,...,smax

h=1,...,Ω(s)

∪ ©(1− q)hn̄∗ (s)ªs=smin,...,smax
h=1,...,Ω̄(s)

where Ω(s) is the lowest natural number satisfying that

(1− q)Ω(s)n∗ (s) < n∗ (smin)

and Ω̄(s) is the lowest natural number satisfying that

(1− q)Ω̄(s)n̄∗ (s) < n∗ (smin)

Proof: See Appendix D.

Hereon, I will assume that m∗ is a vector conveniently ordered. I will refer to m∗(j) as

the jth element of m∗ and the total number of elements in m∗ will be denoted by J . Also,

it will be useful to classify the elements of m∗ into three sets: 1) those that correspond

to establishments that expand (set G∗), 2) those that correspond to establishments that
contract (set C∗), and 3) those that correspond to establishments that remain inactive (set
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I∗). That is, for j = 1, ..., J :

j ∈ G∗, if m∗(j) = (1− q)n∗ (s) for some s ≥ smin
j ∈ C∗, if m∗(j) = (1− q)n̄∗ (s) for some s ≥ smin
j ∈ I∗, if m∗(j) = (1− q)m(j − 1) (3.30)

Observe that equation (3.30) defines an implicit ordering for m∗.

Suppose that, at some date t, the state variable xt has a finite support given by mt (and

the singleton {0}), that mt has dimension J (same dimension as m∗), that mt is close to m∗

and that

xt ({0} , s) = x∗ ({0} , s) , for every s ∈ S (3.31)

xt({mt(j)} , s) = x∗ ({m∗(j)} , s) , for every s ∈ S and every j = 1, ..., J (3.32)

xt = 0, everywhere else.

In addition, assume that nt and n̄t are close to their steady state values n
∗ and n̄∗.7 Then,

the next period finite support mt+1 will be given by

mt+1 (j) =


(1− q)nt (s) , if j ∈ G∗
(1− q)n̄t (s) , if j ∈ C∗

(1− q)mt(j − 1), if j ∈ I∗

 , for j = 1, ..., J, (3.33)

where s in the first line satisfies that m∗(j) = (1− q)n∗ (s) and s in the second line satisfies
that m∗(j) = (1− q)n̄∗ (s). By continuity, mt+1 will be close to m∗ and xt+1 will satisfy that

xt+1({0} , s) = x∗({0} , s), for every s ∈ S
xt+1({mt+1(j)} , s) = x∗ ({m∗(j)} , s) , for every s ∈ S and every j = 1, ..., J

xt+1 = 0, everywhere else.

7For s = 0 I assume without loss of generality that n(s) = n̄(s) = 0, i.e. that the employment thresholds
are identical to their deterministic steady state values.
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Assuming that nt, n̄t, mt, kt, it, N t, N̄t, Mt, Kt, It fluctuate in a small neighborhood

of their deterministic steady state values, the original representative quasi-planner problem

(3.28) can then be replaced by the following transformed problem:

v(z,K,M, k,m) = max
n,n̄,i

neR(z,K,M, k,m,N, N̄, I, n, n̄, i) + βE [v(z0,K 0,M 0, k0,m0) | z]
o

(3.34)

subject to

m0 (j) =


(1− q)n (s) , if j ∈ G∗
(1− q)n̄ (s) , if j ∈ C∗

(1− q)m(j − 1), if j ∈ I∗

 , for j = 1, ..., J,
k0 = (1− δ)k + i

M 0 (j) =


(1− q)N (s; z,K,M) , if j ∈ G∗
(1− q)N̄ (s; z,K,M) , if j ∈ C∗
(1− q)M(j − 1), if j ∈ I∗

 , for j = 1, ..., J,
K 0 = (1− δ)K + I (z,K,M) .

where the decision variables n and n̄ are defined over s ≥ smin.8 The conditions for a recursive
competitive equilibrium now become:

N(s; z,K,M) = n(s; z,K,M,K,M)

N̄(s; z,K,M) = n̄(s; z,K,M,K,M)

I (z,K,M) = i (z,K,M,K,M) .

The return function eR in (3.34) is given by the value of the return function R in (3.28)
that corresponds to the following variables: 1) the discrete distribution x is defined by the

finite supportm as in equation (3.31), 2) the employment rule n is defined by the employment

thresholds n and n̄ as in (3.29), 3) the discrete distribution X is defined by the finite support

8Without loss of generality, n(0) and n̄(0) are set identical to zero. If τ is sufficiently small relative to
the present discounted value of wages, this will always be the optimal choice.
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M , and 3) the employment rule N is defined by the employment thresholds N and N̄ . The

advantage of working with the transformed problem (3.34) instead of the original problem

(3.28) is that it has linear laws of motion. Since all the endogenous arguments of eR take

strictly positive values in the deterministic steady state, a second order Taylor expansion

around the deterministic steady state can be performed to obtain a quadratic return function.

This delivers a linear-quadratic recursive competitive equilibrium structure that can be solved

using standard techniques (e.g. Hansen and Prescott [8]). The assumption that nt, n̄t, mt,

kt, it, N t, N̄t, Mt, Kt, It fluctuate in a sufficiently small neighborhood of their deterministic

steady state values is satisfied in all the experiments reported in this paper.

4. Parametrization

This section describes the steady state observations used to calibrate the model parameters.9

Since the model will be calibrated to U.S. data and this economy is characterized by low firing

costs, the parameter τ is set to zero.10 Given τ , the rest of the parameters to be calibrated

are β, θ, γ, ν, q, α, δ, the distribution ψ, the transition matrix Q for the idiosyncratic

productivity shocks, and the transition matrix H for the aggregate productivity shock. The

model time period is selected to be one quarter.

The first issue that must be addressed is what actual measure of capital should the model

capital correspond to. Since the focus is on establishment level dynamics, it seems natural

to abstract from capital components such as land, residential structures, and consumer

durables. The empirical counterpart for capital is then identified with plant, equipment, and

inventories. As a result, investment is associated in the NIPA with nonresidential investment

plus changes in business inventories. The empirical counterpart for consumption is identified

with personal consumption expenditures in nondurable goods and services. Output is then

defined as the sum of these investment and consumption measures. The quarterly capital-

output ratio and the investment-output ratio corresponding to these measures are 6.8 and

0.15, respectively. Since, at steady state I/Y = δ(K/Y ), these ratios require that δ = 0.0221.

9The calibration procedure follows Veracierto [17] quite closely.

10In the next section, the firing cost parameter τ will be increased and its effects analyzed.
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The annual interest rate is selected to be 4 per cent, which is a compromise between the

average real return on equity and the average real return on short-term debt for the period

1889 to 1978 as reported by Mehra and Prescott [11]. The discount factor β is then chosen

to be 0.99 in order to generate this annual interest rate.

Given the above values for β and δ, and given that the capital share satisfies

θ =
(1/β + δ)K

Y
,

matching the U.S. capital-output ratio requires choosing a value of θ equal to 0.2186. Simi-

larly, γ = 0.64 is selected to generate the share of labor in the National Income and Product

Accounts.

The disutility of work parameter α is an important determinant of aggregate employment

η. Thus, α = 0.94 is picked so that 80 percent of the population works at steady state,

roughly the fraction of the U.S. working age population that is employed.

In turn, the quarterly quit rate parameter q is chosen to be 6 per cent, which is consistent

with evidence on quits from the Job Openings and Labor Turnover Survey (JOLTS) published

by the Bureau of Labor Statistics.

The transition matrix for the idiosyncratic productivity levels Q is restricted to be a

finite approximation to a continuous process of the following form:

Π(0, {0}) = 1

Π(s, [smin, ŝ]) =
1

ζ
Pr {(a+ ρs ln s+ ε0s) ∈ [smin, ŝ]} , for s, ŝ ≥ smin

where a, ρs and ζ are constants, ε0s is an i.i.d. normally distributed variable with mean 0 and

standard deviation σs, and Π (s, A) is the probability of transiting from s to a next period

value in the set A.11 We then have to determine the four parameters a, ρs, ζ and σs, the

idiosyncratic productivity levels {smin,..., smax} and the initial distribution ψ. Since all these

parameters are important determinants of the establishment dynamics of the model, their

11Observe that Π is basically an AR(1) process truncated at the value of 0.
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values will be selected to reproduce several features of U.S. establishment dynamics.

One such feature is the distribution of establishments by employment size as reported

by the Census of Manufacturers. In particular, the distribution over initial idiosyncratic

productivity levels ψ is selected so that the invariant distribution x∗ in the model economy

mimics the average size distribution of manufacturing establishments across the census years

1967, 1972, 1977 and 1982, which is reproduced in Table 1. For this purpose, a total of

nine positive idiosyncratic productivity levels are introduced and their values {smin,..., smax}
are selected so that the (corresponding nine types of) establishments in the model economy

display employment levels in the middle of each of the employment ranges shown in Table

1.12

Another set of observations on (manufacturing) establishment dynamics pertains to job-

creation and job-destruction data. Davis and Haltiwanger [5] reported that, for the period

between 1972:2 and 1988:4, the job-creation rate due to births (JCB) was 0.62% while the

job-creation rate due to continuing establishments (JCC) was 4.77%. They also reported

that the job-destruction rate due to deaths (JDD) was 0.83% while the job-destruction rate

due to continuing establishments (JDC) was 4.89%.13 Since employment is stationary in the

model economy, the model can not match these exact job-creation and job-destruction rates.

Imposing the approximate symmetry observed in U.S. data, I chose instead to match the

following rates: JCB = 0.73, JCC = 4.80%, JDD = 0.73% and JDC = 4.80%. This gives

rise to three independent observations. In order to calibrate the four parameters a, ρs, ζ and

σs associated to the transition matrix an additional observation is then needed.

The last observation is obtained from Dunne et al. [6] who analyzed establishment

turnover using data on plants that first began operating in the 1967, 1972, and 1977 Census

of Manufacturing. They found that the five-year exit rate among these establishments was

36.2%. Matching this exit rate, together with the job-creation and destruction rates described

above, requires the following parameter values: a = 0.05155, ρs = 0.996, ζ = 1.005 and

σs = 0.0372. The values for the idiosyncratic productivity levels {smin,..., smax}, the initial

12In practice, I normalized the lowest idiosyncratic productivity level smin to one and chose the endowment
of new establishments ν to make the nine employment levels fall in the middle of the employment ranges.

13These are all quarterly rates.
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distribution ψ and the transition matrix Q that correspond to this calibration procedure are

provided in Table 2.

Finally, the aggregate productivity shock is constrained to follow a standard AR(1)

process:

z0 = ρzz + ε0z

where ε0z is an i.i.d. normally distributed variable with mean 0 and standard deviation

σz.14 The parameters ρz and σz are selected so that measured Solow residuals in the model

economy replicate the behavior of measured Solow residuals in the data.15 Using the measure

of output described above and a labor share of 0.64, measured Solow residuals are found to

be as highly persistent as in Prescott [13] but the standard deviation of technology changes

is somewhat smaller: 0.0063 instead of the usual 0.0076 value used in the literature. As a

consequence, ρz = 0.95 and σz = 0.0063 are chosen here.

5. Results

5.1. Steady state effects

This section reports the steady state effects of firing taxes in the deterministic version of the

model economy.16 Providing a steady state analysis is important because it describes how

the firing taxes affect the mean levels around which the economy fluctuates.

Table 3 shows the effects of increasing the firing tax τ from zero to 0.33, one, two and

four quarters of wages.17 We see that the steady state consequences on the job reallocation

14Instead of selecting a finite approximation to this process (which would determine the finite set Z and
the transition matrix H described in the previous sections) I choose to work with the continuous AR(1)
process directly since the linear-quadratic computational method renders it tractable.

15Proportionate changes in measured Solow residual are defined as the proportionate change in aggregate
output minus the sum of the proportionate change in labor times the labor share γ, minus the sum of the
proportionate change in capital times (1− γ).

16This type of analysis is not novel. A number of papers have evaluated the steady state effects of firing
taxes in a variety of settings. Alvarez and Veracierto [2], Hopenhayn and Rogerson [9], Millard and Mortensen
[12] and Veracierto [17] are only a few examples.

17Firing costs equal to one year of wages amount to the severance payments that must be given to blue
collar workers with ten years of service in countries with the toughest legislation (Lazear [10]. That is, they
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process are quite significant. In order to avoid paying firing taxes equal to one year of wages

(τ = 4w), the job destruction rate of continuing establishments (JDC) decreases from 4.80%

to 2.74%. Since establishments prefer to wait until they exit before firing additional workers,

the job destruction rate due to deaths (JDD) increases from 0.73% to 0.80%. In turn,

establishments that receive positive productivity shocks choose to reduce their employment

growth in order to avoid paying firing taxes in the future. This leads to a reduction in the

job creation rate due to continuing establishments (JCC) from 4.80% to 3.05% and in the job

creation rate due to births (JCB) from 0.73% to 0.47%. The fact that establishments do not

respond to the idiosyncratic productivity shocks as much as they do in the absence of firing

taxes leads to a significant production inefficiency: Establishments with low productivity

levels end up employing too many workers and establishments with high productivity levels

end up employing too few workers. This production inefficiency induces agents to substitute

away from market activities towards leisure, leading to a decrease of 2.46% in aggregate

employment. The lower productivity and employment levels in turn lead to a decrease of

3.52% in output, consumption, capital and investment.

The last row of Table 3 shows the welfare effects. In particular, it reports the propor-

tionate increase in consumption that must be given to the representative agent living in the

steady state with firing taxes to make him indifferent with being in the steady state with

no firing taxes. Since the economy without firing taxes is Pareto optimal, we know that

this compensation must be positive. In fact, Table 3 shows that it can be a large number:

According to this measure, the welfare cost of introducing a firing tax equal to one year of

wages is equal to 1.74% of consumption.18

5.2. Business cycle effects

This section constitutes the core of the paper. It analyzes the effects of firing taxes on busi-

ness cycle dynamics. Before proceeding to the main results, it will be important to determine

represent an upper bound on what is empirically reasonable.

18This paper obtains lower welfare costs than Veracierto [17] because it provides a quits allowance before
taxing firing, while Veracierto [17] doesn’t. As a consequence, the firing taxes have smaller effects.
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the empirical plausibility of the business cycles generated by the benchmark economy with

zero firing costs that was calibrated in Section 4. The first and second columns of Table 4

report business cycle statistics for the U.S. and the benchmark economy (τ = 0), respec-

tively. Before any statistics were computed, all time series were logged and detrended using

the Hodrick-Prescott filter. The empirical measures of output, investment and consumption

reported in the table correspond to the measures described in Section 4, and cover the period

between 1960:1 and 1993:4. For the model economy, time series of length equal to 136 peri-

ods (the same length as the U.S. series) were computed for 100 simulations and the reported

statistics are averages across these simulations. Comparing the business cycles generated by

both economies, Table 4 shows that output fluctuates roughly the same amount in the model

as in the U.S. Investment is about 5 times more variable than output in the model, while it

is about 4 times as variable in the data. Consumption is less variable than output in both

economies, however, it is less variable in the model than in the U.S. The aggregate stock of

capital varies about the same amount in both economies. Hours vary less than output in

the model, while they vary slightly more than output in the data. Similarly, productivity

fluctuates less in the model than in the U.S. In terms of correlations with output, we see that

almost all variables are highly procyclical, both in the model and in U.S. data. The only

exceptions are capital (which is acyclical both in the model and the U.S.) and productivity

(which is highly procyclical in the model, but acyclical in the data). Overall, the bench-

mark economy is found to be broadly consistent with salient features of U.S. business cycle

dynamics, similarly to previous RBC models in the literature.

Having established the empirical plausibility of the benchmark economy, I now turn to

evaluate the effects of firing costs on business cycle dynamics. The last three columns show

the results. We see that introducing firing costs equal to one year of wages has considerable

effects: The standard deviation of output decreases by 10.7% (from 1.40 to 1.25). The

expenditures components also become less variable, but by different amounts: The standard

deviation of consumption decreases by 4.1% (from 0.49 to 0.47) while the standard deviation

of investment decreases by 14.7% (from 7.07 to 6.03). These are significant effects. However,

they are relatively small compared to the effects on employment, whose standard deviation

decreases by 30.6% (from 0.98 to 0.68). In terms of comovements with output, the effects
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of firing taxes are generally insignificant. The only sizable effect is on labor productivity,

whose correlation with output increases from 0.91 to 0.99.

The intuition for why firing taxes reduce the variability of aggregate employment by such

a considerable amount is straightforward. The presence of firing taxes leads establishments

to follow the (S,s) decision rule given by equation (3.29). As a consequence, an establishment

that has a previous employment level net of quits (1 − q)u between its lower employment
threshold n and its upper employment threshold n̄ chooses to remain inactive, that is, it

makes its current employment equal to its previous employment level net of quits (1− q)u.
Since the employment level of an inactive establishment does not respond to aggregate

conditions, the mere upsurge of this type of establishments leads to a reduction in the

variability of aggregate employment.

The ranges of inaction also lowers the employment variability of active establishments.

The reason is that an establishment that adjusts its employment level at a time of a positive

aggregate shock will be concerned that, in the future, it may enter a long period of inaction

during which aggregate productivity will revert to its mean. If the establishment responds

too much to the current aggregate productivity shock it may find itself with an employment

level that is too high for the aggregate productivity levels that will hold later on. For this

reason, active establishments reduce the response of their employment levels n and n̄ to the

aggregate productivity shocks, dampening the fluctuations in aggregate employment.

Table 5 shows the effects of firing taxes on the persistence of aggregate employment. In

particular, it reports the autocorrelation of aggregate employment at lags that vary between

one and five quarters. We see that the autocorrelation at a one quarter lag increases from

0.66 to 0.71 when firing taxes equal to one year of wages (τ = 4w) are introduced.

The effects are even larger at higher lags. For example, the autocorrelation at a three quarters

lag increases from 0.20 to 0.27. These are significant effects. The reason for why firing taxes

increase the persistence of aggregate employment can be found in the creation of the ranges of

inaction. If an establishment enters a range of inaction after having expanded its employment

level in response to an aggregate productivity shock, the effects of the expansion will persist

until the establishment comes out of the range of inaction and adjusts its employment again.

Thus the presence of inactive establishments makes aggregate employment more persistent.
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Table 6 reports the effects of firing taxes on the cyclical behavior of job creation and job

destruction. We see that when the firing taxes are equal to zero, the job creation rate and

the job destruction rate vary by the same amount and are negatively correlated.19 When

the firing taxes are introduced, the job creation rate and job destruction rates become less

variable and less negatively correlated. An interesting feature in Table 6 is that the firing

taxes decrease the variability of job destruction more than the variability of job creation.

This finding seems to contradict Campbell and Fisher [4], who report that introducing firing

costs increase the relative variability of job destruction. However, Campbell and Fisher

perform a partial equilibrium analysis where the only source of fluctuations is a wage shock.

Aggregate productivity, which is the source of aggregate fluctuations in this paper, is left

unchanged. This is an important difference. Cabrales and Hopenhayn [3] find, in a partial

equilibrium setting, that firing costs increase the relative variability of job creation when the

source of the fluctuations is an aggregate productivity shock instead of the wage rate.

An interesting feature in Tables 4, 5 and 6 is that even low levels of firing taxes can have

substantial effects on business cycle dynamics. In particular, firing taxes equal to one quarter

of wages (τ = w) are found to reduce the standard deviations of output, investment and

labor 70% as much as firing taxes equal to one year of wages (τ = 4w). The similarities are

even stronger when considering the effects on the autocorrelation of aggregate employment,

and the cyclical behavior job creation and job destruction. The reasons for why small firing

taxes can have such significant effects are familiar to the literature. For example, in the

investment decision problem analyzed by Abel and Eberly [1] the derivative of the range of

inaction with respect to the wedge between the purchase and resale price of capital is shown

to be infinite when the wedge is equal to zero. In this paper, the ranges of inaction are

created by a firing tax but the mechanism is the same: Small firing taxes have large effects

on the length of the ranges of inaction. Through their effects on the ranges of inaction, the

small firing taxes have important consequences for the aggregate fluctuations of the economy.

19The fact that the job destruction rate is more variable than the job creation rate in U.S. data is not
particularly worrisome. Veracierto [16] shows that incorporating a reallocation shock that is correlated
with the aggregate productivity shock can reproduce that particular feature of U.S. data. However, the
reallocation shock has no important effects on aggregate fluctuations.
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Observe that, by reducing aggregate fluctuations, the welfare costs of firing taxes could

be lower than those estimated from comparing steady states. However, this effect turns out

to be negligible: Once the business cycle consequences are taken into account, the welfare

costs of firing taxes are virtually the same as those reported in Table 3. There are two

reasons for this. First, most of the reduction in variability takes place in employment. Since

the preferences of the representative agent are linear with respect to this component, there

are no welfare gains from this effect. Second, the volatility of consumption decreases but by

a very small amount. This small effect, together with the relatively low risk aversion of the

representative agent, produces an extremely small welfare gain.

5.3. No tax Rebates

So far, the firing taxes have been rebated to the representative household as a lump sum

transfer. However, many of the firing costs paid by employers in actual countries do not go to

the workers but involve resources that are wasted: Procedural requirements and legal costs

are examples. To assess the effects of this type of firing costs, this section analyzes firing

taxes that are thrown into the ocean. In particular, it analyzes a social planner problem

given by maximizing equation (3.12) subject to equations (3.13) through (3.18), but where

the lump-sum transfers Tt (zt) in equation (3.13) are set to zero.

Table 7 reports the steady state results. Not surprisingly, the effects of firing taxes on

the job creation and destruction process are the same as when the firing taxes are rebated

as lump sum transfers. However, there are important differences in the rest of the variables.

In particular, firing taxes equal to one year of wages (τ = 4w) reduce employment by only

0.28%, compared to the 2.46% drop reported in Table 3. The reason is that when the firing

taxes are not rebated to the household sector, they generate a large income effect. This effect

cancels the substitution effect from the lower wages and leads to a small change in labor

supply. Despite the small drop in employment, consumption decreases quite considerably

because part of the output is used up in firing workers. Since both consumption and leisure

are smaller than when the firing taxes are rebated as lump-sum transfers, the welfare costs

are much larger: 3.84% instead of 1.74%.

Table 8 reports the business cycle effects. We see that the business cycle fluctuations are
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virtually the same when the tax revenues are rebated to the households sector as when they

are not (Table 4). There are two reasons for this. First, total tax revenues are small: Even

when τ is equal to one year of wages and the tax revenues are the largest, they represent

only 1.86% of aggregate output (Tables 3 and 7). Second, the tax revenues fluctuate very

little: When τ is equal to one year of wages, their standard deviation is only 0.50. Since the

tax revenues are small and fluctuate very little, it makes no difference if they are rebated to

the households or not: They do not represent a significant source of aggregate fluctuations.

We conclude that determining to what extent the firing taxes are rebated to the household

sector is crucial for evaluating their long-run outcomes, but has no importance for analyzing

their business cycle effects.

A. Equivalence between quasi-planner and competitive equilibria

Let
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and equations (3.2)-(3.11).
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be the Lagrange multipliers for equations (3.13)-(3.17), respectively. The first order condi-

tions for a quasi-planner equilibrium are then given by equations (A.1)-(A.9) and equations

(3.13)-(3.19).

Establishing that quasi-planner and competitive equilibria are equivalent then amounts

to showing that equations (3.2)-(3.11) are satisfied if and only if equations (3.13)-(3.19) hold.

This is a straightforward verification.
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B. Determination of the individual state of an establishment

Proposition B.1. Let (h, sh) be the age and the idiosyncratic history of a particular type

of establishment at date 0. Let (j, sj) be the age and the idiosyncratic history of another

type of establishment at date 0. Suppose that

nh−1,−1
¡
sh−1, z−1

¢
= nj−1,−1

¡
sj−1, z−1

¢
,

and that sh = sj.

Then, the solution {ĉt, k̂t+1, η̂t, ĝt, n̂t, f̂t}∞t=0 to the quasi-planner problem (3.12) has the
following property:
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Proof: Suppose not.
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and, for every t > 1, st and zt, let
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Consider an alternative contingent plan {ekt+1, eηt, egt, ent, eft}∞t=0 which is identical to the
solution to the quasi-planner problem except that

enh,0 ¡sh, z0¢ = enj,0 ¡sj, z0¢ = nψ0 ¡z0¢
efh,0 ¡sh, z0¢ = efj,0 ¡sj, z0¢ = fψ0 ¡z0¢
egh,0 ¡sh, z0¢ = egj,0 ¡sj, z0¢ = gψ0 ¡z0¢

and for everyt > 1, st and zt:

enh+t ¡(sh, st), zt¢ = enj+t ¡(sj, st), zt¢ = nψt ¡st, zt¢
efh+t ¡(sh, st), zt¢ = efj+t ¡(sj, st), zt¢ = fψt ¡st, zt¢ .
egh+t ¡(sh, st), zt¢ = egj+t ¡(sj, st), zt¢ = gψt ¡st, zt¢

This alternative plan is feasible and, by the strict concavity of the establishment level

production function, it leads to a larger right hand side to equation (3.13) for every zt.

Hence, consumption can be made larger than under the optimal plan (strictly larger at some

zt) while aggregate employment is left unchanged. This increases expected utility, leading

to a contradiction.
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C. Characterization of the optimal employment rule

From equations (3.14), (A.7)-(A.9) we know that

0 ≤ φa,t
¡
sa, zt

¢ ≤ τ (C.1)

na,t
¡
sa, zt

¢
> (1− q)na−1,t−1

¡
sa−1, zt−1

¢
=⇒ φa,t

¡
sa, zt

¢
= 0 (C.2)

na,t
¡
sa, zt

¢
< (1− q)na−1,t−1

¡
sa−1, zt−1

¢
=⇒ φa,t

¡
sa, zt

¢
= τ (C.3)

0 < φa,t
¡
sa, zt

¢
< τ =⇒ na,t

¡
sa, zt

¢
= (1− q)na−1,t−1

¡
sa−1, zt−1

¢
(C.4)

Using equations (A.5), (A.6), and (C.1)-(C.4) we have (when sa > 0) that:

φa,t
¡
sa, zt

¢
= min

©
τ ,max

£
Ωa,t

¡
sa, zt

¢
, 0
¤ª

(C.5)

where

Ωa,t
¡
sa, zt

¢
= wt

¡
zt
¢− (eztsa) 1

1−θ

µ
θ

rt (zt)

¶ θ
1−θ

γ
£
(1− q)na−1,t−1

¡
sa−1, zt−1

¢¤−( 1−θ−γ1−θ )

+
X
sa+1

X
zt+1

(1− q)φa+1,t+1
¡
sa+1, zt+1

¢
pt
¡
zt+1

¢
Q(sa, sa+1).

Under a recursive formulation, φa,t (s
a, zt), Ωa,t (sa, zt) and na,t (sa, zt) will depend on

(u, s; z,K,X, k, x), where u is the previous period employment na−1,t−1 (sa−1, zt−1) and s is

the current idiosyncratic productivity level sa, while wt (zt), rt (zt), and pt (zt+1) will depend

on (z,K,X, k, x). Abusing notation, for s > 0, we can rewrite equation (C.5) as follows:

φ (u, s; z,K,X, k, x) = min {τ ,max [Ω (u, s; z,K,X, k, x) , 0]} (C.6)

where

Ω (u, s; z,K,X, k, x) = w(z,K,X, k, x)− (ezs) 1
1−θ

µ
θ

r(z,K,X, k, x)

¶ θ
1−θ

γ [(1− q)u]−( 1−θ−γ1−θ )
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+
X
s0

X
z0
(1− q)φ ((1− q)u, s0; z0,K 0,X 0, k0, x0) p(z,K,X, k, x; z0)Q(s, s0)

and where K 0, X 0, k0 and x0 are given by equations (3.26), (3.27), (3.23) and (3.24) respec-

tively.

Also,

φ (u, 0; z,K,X, k, x) = τ (C.7)

since establishments that receive an idiosyncratic productivity s equal to zero choose zero

employment levels.20

Note that, since

− (ezs) 1
1−θ

µ
θ

r(z,K,X, k, x)

¶ θ
1−θ

γ [(1− q)u]−( 1−θ−γ1−θ )

is strictly increasing in u, the solution φ to the functional equation given by (C.6) and (C.7)

will be increasing in u. As a consequence, there exists a unique n̄(s; z,K,X, k, x) satisfying

τ = w(z,K,X, k, x)− (ezs) 1
1−θ

µ
θ

r(z,K,X, k, x)

¶ θ
1−θ

γ [n̄(s; z,K,X, k, x)]−(
1−θ−γ
1−θ )

+
X
s0

X
z0
(1− q)φ (n̄(s; z,K,X, k, x), s0; z0,K 0, X 0, k0, x0) p(z,K,X, k, x; z0)Q(s, s0), (C.8)

and there exists a unique n(s; z,K,X, k, x) satisfying

0 = w(z,K,X, k, x)− (ezs) 1
1−θ

µ
θ

r(z,K,X, k, x)

¶ θ
1−θ

γ [n(s; z,K,X, k, x)]−(
1−θ−γ
1−θ )

+
X
s0

X
z0
(1− q)φ (n(s; z,K,X, k, x), s0; z0,K 0, X 0, k0, x0) p(z,K,X, k, x; z0)Q(s, s0). (C.9)

Observe that n(s; z,K,X, k, x) < n̄(s; z,K,X, k, x).

Since

n(u, s; z,K,X, k, x) > (1− q)u =⇒ φ (u, s; z,K,X, k, x) = 0,

20This is true if τ is sufficiently small relative to the present discounted value of wages
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n(u, s; z,K,X, k, x) < (1− q)u =⇒ φ (u, s; z,K,X, k, x) = τ ,

0 < φ (u, s; z,K,X, k, x) < τ =⇒ n(u, s; z,K,X, k, x) = (1− q)u,

and since

φ (u, s; z,K,X, k, x) = w(z,K,X, k, x)

− (ezs) 1
1−θ

µ
θ

r(z,K,X, k, x)

¶ θ
1−θ

γ [n(u, s; z,K,X, k, x)]−(
1−θ−γ
1−θ )

+
X
s0

X
z0
(1− q)φ (n(u, s; z,K,X, k, x), s0; z0, K 0,X 0, k0, x0) p(z,K,X, k, x; z0)Q(s, s0),

equations (C.8) and (C.9), together with the fact that φ is increasing in u, imply the em-

ployment decision rule (3.29).

D. Support of invariant distribution

Proof of Proposition 3.1: That 0 belongs to the support follows from the fact that

new establishments are born with zero previous period employment and from the fact that

establishments that die (i.e transit to s = 0) choose zero employment level.

That the set m∗ belongs to the support follows from the fact that every time that an

establishment of type (u, s) has a next period number of agents different from n0 = (1− q)u
it must be n0 = (1 − q)n∗ (s), if the establishment expands, or n0 = (1 − q)n̄∗ (s), if the
establishment contracts. Observe that Ω(s) is an upper-bound on the duration of inaction

for an establishment that has just expanded (and has current idiosyncratic productivity

s ≥ smin). Similarly, Ω̄(s) is an upper-bound on the duration of inaction for an establishment
that has just contracted (and has current idiosyncratic productivity s ≥ smin).
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FIGURE 1
Output fluctuations vs. employment protection
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Table 1
Size distribution of U.S. manufacturing establishments

Employment Shares (%)

5-9 23.15

10-19 22.82

20-49 24.83

50-99 12.59

100-249 10.05

250-499 3.86

500-999 1.68

1000-2499 0.73

>2500 0.28
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Table 2
Calibrated idiosyncratic process

Idiosyncratic Productivity levels:

s0 = 0.00 s1 = 1.00 s2 = 1.11 s3 = 1.26 s4 = 1.40

s5 = 1.58 s6 = 1.76 s7 = 1.94 s8 = 2.18 s9 = 2.53

Initial distribution:

ψ0 = 0.00 ψ1 = 0.50 ψ2 = 0.15 ψ3 = 0.35 ψ4 = 0.00

ψ5 = 0.00 ψ6 = 0.00 ψ7 = 0.00 ψ8 = 0.00 ψ9 = 0.00

Transition matrix:

Q =



1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.088 0.847 0.065 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.005 0.084 0.879 0.032 0.000 0.000 0.000 0.000 0.000 0.000

0.005 0.000 0.086 0.847 0.062 0.000 0.000 0.000 0.000 0.000

0.005 0.000 0.000 0.088 0.876 0.031 0.000 0.000 0.000 0.000

0.005 0.000 0.000 0.000 0.090 0.846 0.059 0.000 0.000 0.000

0.005 0.000 0.000 0.000 0.000 0.092 0.808 0.095 0.000 0.000

0.005 0.000 0.000 0.000 0.000 0.000 0.094 0.873 0.028 0.000

0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.096 0.895 0.004

0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.099 0.896


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Table 3
Steady state effects

τ = 0 τ = 0.33w τ = w τ = 2w τ = 4w

output 100.00 99.13 98.38 97.65 96.48

consumption 100.00 99.13 98.38 97.65 96.48

investment 100.00 99.13 98.38 97.65 96.48

capital 100.00 99.13 98.38 97.65 96.48

labor 100.00 99.31 98.99 98.55 97.54

taxes/output 0.0% 0.49% 0.78% 1.13% 1.86%

JCB 0.73% 0.66% 0.58% 0.53% 0.47%

JCC 4.80% 3.71% 3.17% 3.05% 3.05%

JDD 0.73% 0.77% 0.79% 0.80% 0.80%

JDC 4.80% 3.61% 2.96% 2.79% 2.74%

Welfare cost 0.00% 0.35% 0.88% 1.30% 1.74%
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Table 4
Business cycle effects

U.S. data τ = 0 τ = 0.33w τ = w τ = 2w τ = 4w

A: Standard deviations

output 1.33 1.40 1.35 1.29 1.26 1.25

consumption 0.87 0.49 0.49 0.48 0.47 0.47

investment 4.99 7.07 6.72 6.32 6.12 6.03

capital 0.63 0.50 0.49 0.47 0.46 0.45

labor 1.42 0.98 0.88 0.77 0.71 0.68

productivity 0.76 0.49 0.52 0.55 0.57 0.58

taxes n.a. n.a. 2.27 1.27 0.71 0.50

B: Correlations with output

output 1.00 1.00 1.00 1.00 1.00 1.00

consumption 0.91 0.91 0.92 0.92 0.93 0.93

investment 0.91 0.98 0.98 0.98 0.98 0.98

capital 0.04 0.08 0.08 0.08 0.08 0.08

labor 0.85 0.98 0.98 0.99 0.99 0.99

productivity -0.16 0.91 0.95 0.97 0.98 0.99

taxes n.a. n.a. 0.26 0.20 0.29 0.54
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Table 5
Employment autocorrelation function

τ = 0 τ = 0.33w τ = w τ = 2w τ = 4w

1 quarter 0.66 0.69 0.71 0.71 0.71

2 quarters 0.40 0.44 0.46 0.47 0.47

3 quarters 0.20 0.24 0.26 0.27 0.27

4 quarters 0.03 0.06 0.08 0.09 0.09

5 quarters -0.09 -0.07 -0.05 -0.04 -0.04
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Table 6
Job creation and job destruction fluctuations

U.S. τ = 0 τ = 0.33w τ = w τ = 2w τ4w

σ(JC) 0.88 0.44 0.39 0.34 0.32 0.31

σ(JD) 1.65 0.44 0.37 0.30 0.28 0.27

corr(JC, JD) -0.37 -0.60 -0.60 -0.57 -0.57 -0.56
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Table 7
Steady state effects - No tax rebates

τ = 0 τ = 0.33w τ = w τ = 2w τ = 4w

output 100.00 99.60 99.12 98.72 98.25

consumption 100.00 99.03 98.22 97.41 96.10

investment 100.00 99.60 99.12 98.72 98.25

capital 100.00 99.60 99.12 98.72 98.25

labor 100.00 99.88 99.90 99.88 99.72

taxes/output 0.0% 0.49% 0.78% 1.13% 1.86%

JCB 0.73% 0.66% 0.58% 0.53% 0.47%

JCC 4.80% 3.71% 3.17% 3.05% 3.05%

JDD 0.73% 0.77% 0.79% 0.80% 0.80%

JDC 4.80% 3.61% 2.96% 2.79% 2.74%

Welfare cost 0.00% 0.89% 1.74% 2.56% 3.84%
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Table 8
Business cycle effects - No tax rebates

U.S. data τ = 0 τ = 0.33w τ = w τ = 2w τ = 4w

A: Standard deviations

output 1.33 1.40 1.35 1.29 1.26 1.24

consumption 0.87 0.49 0.49 0.48 0.47 0.47

investment 4.99 7.07 6.74 6.32 6.14 6.02

capital 0.63 0.50 0.49 0.47 0.46 0.45

labor 1.42 0.98 0.88 0.77 0.71 0.68

productivity 0.76 0.49 0.52 0.55 0.57 0.58

taxes n.a. n.a. 2.28 1.27 0.72 0.50

B: Correlations with output

output 1.00 1.00 1.00 1.00 1.00 1.00

consumption 0.91 0.91 0.92 0.92 0.93 0.93

investment 0.91 0.98 0.98 0.98 0.98 0.98

capital 0.04 0.08 0.08 0.08 0.09 0.08

labor 0.85 0.98 0.98 0.99 0.99 0.99

productivity -0.16 0.91 0.95 0.97 0.98 0.99

taxes n.a. n.a. 0.26 0.20 0.28 0.54
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